Rabu, 13 Februari 2013

PROSES MEMBUBUT

1.1 Pengertian
       Bubut (Turning) adalah suatu proses pemesinan / pembentukan benda kerja (material/work piece) dengan cara menghilangkan/pengambilan tatal dari bahan/benda kerja, dimana pahat memotong sementara benda kerja yang berputar. Bubut sendiri merupakan suatu proses pemakanan /pembentukan benda kerja yang sayatannya dilakukan dengan cara memutar benda kerja kemudian dikenakan pada pahat yang digerakkan secara translasi sejajar dengan sumbu putar dari benda kerja. Gerakan putar dari benda kerja disebut gerak potong relatif dan gerakkan translasi dari pahat disebut gerak umpan.
1.2 Pengelompokan mesin bubut
Pembagian mesin bubut berdasarkan kemampuan pengerjaan dikelompokkan menjadi enam kelompok besar yaitu:
a. Mesin Bubut Ringan
Mesin ini bentuknya kecil dan sederhana, digunakan untuk mengerjakan benda-benda yang kecil pula.
Biasanya diletakkan diatas meja kerja.
Contoh : Mesin bubut Simonet.
b. Mesin Bubut Revolver
Mesin ini khusus untuk memproduksi benda kerja yang ukurannya sama dan dalam jumlah yang banyak atau untuk pengerjaan awal.
Contoh : Mesin bubut Kapstan.
c. Mesin Bubut Sedang
Konstruksi mesin bubut ini lebih cermat dan dilengkapi dengan penggabungan perlengkapan yang khusus. Mesin ini digunakan untuk pengerjaan yang membutuhkan ketelitian tinggi.
d. Mesin Bubut Standard
Mesin ini mempunyai power yang lebih besar dan digunakan untuk pengerjaan pembubutan yang memerlukan ketelitian tinggi dengan benda kerja yang cukup besar.  Contoh : Cholcester Master dan Kerry.
e. Mesin Bubut Beralas Panjang
Mesin bubut ini termasuk mesin bubut industri berat yang banyak digunakan pada benda kerja yang besar dan panjang. Misalnya poros-poros kapal dan poros transmisi.
f. Mesin Bubut CNC (Computer Numerically controlled)
Mesin bubut ini adalah jenis mesin bubut yang sudah dilengkapi dengan sistem kontrol komputer. Operator hanya tinggal memasukan program yang terstruktur yang sesuai dengan bahasa program yang telah ditentukan. Biasanya mesin ini digunakan untuk proses produksi masal karena salah satu kelebihannya adalah tingkat keakuratan dan presisi yang tinggi. Contoh program yang dikenal adalah : Emco, Fanuc, Cincinati, Fagor, Siemens dll.
  
1.3 Gerakan Mesin Bubut
Dalam mesin bubut dikenal ada 3 Gerakan mesin Bubut :
1. Gerak Utama Berputar : Chuck (Pencekam Benda Kerja)
Disebut juga dengan Kecepatan Putaran Benda kerja yang dipasang pada chuck. Satuan kecepatan Putaran (Speed) adalah Rpm = Rotasi Per Menit.
2. Gerak Memanjang : Eretan Bawah
Adalah gerakan dimana arah pemotongan sejajar dengan sumbu benda kerja, gerakan ini disebut gerakan memanjang atau gerak pemakanan.
3. Gerak Melintang : Eretan Atas
Adalah gerakan dimana arah pemotongannya tegak lurus terhadap sumbu benda kerja, maka disebut gerakan melintang atau pemotongan permukaan (facing).



1.4 Putaran Mesin Bubut
 MENCARI KECEPATAN PUTARAN MESIN BUBUT (SPEED SPINDLE)
Hasil Pembubutan yang baik dan halus dipengaruhi oleh beberapa faktor, yaitu :
1. Kecepatan Putaran Mesin (Speed Spindle)
2. Kecepatan Asutan Pemotongan (Feeding)
3. Kekerasan Bahan/material
4. Kedalaman Pemakanan (Deep of Cut)
  Kecepatan Putaran Mesin (Speed Spindle) juga dipengaruhi oleh beberapa faktor diantaranya :
 Besar Diameter Benda Kerja (Work piece Diameter)
Prinsip :
“Semakin Besar diameter benda kerja maka putaran pelan”. Sebaliknya. “ Jika semakin Kecil diameter Benda kerja, maka Putaran semakin besar.
  1. Tebal Pemakanan (Deep of Cut)
Untuk pemakanan yang besar kecepatan mesin harus pelan sedangkan untuk pemakanan yang kecil maka kecepatan mesin sebaiknya lebih tinggi atau cepat.
3. Kecepatan Pemotongan (Cutting Speed)
Pada pemotongan kasar harus digunakan putaran mesin yang rendah (lambat) dan kecepatan pemakanan yang besar (cepat) maka hasilnya akan baik.
Pada pemotongan dengan tingkat penyelesaian halus digunakan putaran mesin yang tinggi dan kecepatan pemakanan yang lambat.
D      = Diameter Benda kerja
d1     = Tebal Pemakanan
r       = Jari-jari
Jika benda kerja dengan garis tengah d1 membuat 1 putaran tiap menit, maka panjang tatal (beram) yang terpotong dalam 1 menit adalah d x p = keliling.

Jika benda kerja berputar lebih dari 1 putaran dalam 1 menit, misalnya n putaran, maka panjang tatal yang terpotong dalam 1 menit adalah = dxpxn.

Panjang tatal ini diukur dalam satuan meter tiap menit dan disebut dengan kecepatan potong.

Makin besar garis tengah benda kerja, maka makin panjang perbandingan tatal yang dibentuk. Kita lihat, bahwa kecepatan potong itu dipengaruhi langsung oleh besarnya garis tengah benda kerja dan banyaknya putaran tiap menit.

Banyaknya putaran tiap menit = r.p.m (rotasi per menit)

Pada gambar-gambar teknik, ukuran garis tengah itu dinyatakan dalam mm, tetapi kecepatan potong dalam membubut dinyatakan dalam m/menit. Oleh karena itu kita harus membaginya dengan 1000 untuk memperoleh satuan meter.
maka putaran didapatkan dengan rumus :
Rumus Mencari Kecepatan Putaran Mesin Bubut
n = Vc x 1000
Keterangan :                              л  x  d
n  = Putaran Mesin Bubut………  Rotasi / Revolution Per Menit (Rpm)
        Vc = Kecepatan Potong Dalam Meter Per Menit…………….  (M/Menit)
d  = Diameter Benda Kerja……………… (mm)
л  = 3.14
 Mencari Harga Kecepatan Potong (Cutting Speed)
Kecepatan potong dipengaruhi oleh faktor-faktor sebagai berikut :
1. ukuran diameter benda kerja yang dikerjakan
2. Jenis Kekerasan Material/ benda kerja
3. Ukuran bagian tatal yang terpotong (dalamnya pemotongan x kecepatan
    Pemakanan)
4. Tingkat kehalusan yang diinginkan
5. Bahan / Material dari pahat yang digunakan
6. Bentuk pahat
7. Pencekaman/penjepitan benda kerja
8. Macam dan keadaan mesin bubut
        Harga Kecepatan Potong (Vc) Dapat dicari dengan Rumus :
 n  = Putaran Mesin Bubut………  Rotasi / Revolution Per Menit (Rpm)
        Vc = Kecepatan Potong Dalam Meter Per Menit…………….  (M/Menit)
d  = Diameter Benda Kerja……………… (mm)
л  = 3.14

MENGOPRASIKAN DAN MEMPROGRAM MESIN CNC FRAIS TU-3A

Kegiatan Belajar 1
BAGIAN-BAGIAN MESIN DAN PENGENDALI
a. Tujuan Kegiatan Pembelajaran
Ø Menyebutkan bagian-bagian utama mesin CNC TU-3A
Ø Menyebutkan fungsi bagian-bagian control mesin CNC TU-3A
Ø Menyebutkan fungsi setiap tombol pada panel pengendali mesin
a. Uraian Materi Pembelajaran
1. Bagian-bagian mesin CNC TU-3A
Yang termasuk pada bagian-bagian utama mesin CNC TU-3A adalah :
a. Panel pengendali
b. Monitor
c. Motor utama
d. Spindel utama
e. Meja mesin
f. Motor step
g. Landasan luncur meja mesin
h. Pintu mesin
Secara lengkap bagian-bagian utama mesin CNC TU-3A ditunjukan pada gambar di bawah ini
Gambar 1.1 Mesin CNC TU-3­0
1. Panel pengendali
Unsur-unsur pengendali untuk pelayanan mesin CNC TU-3A adalah semua piranti yang terdapat pada panel pengendali mesin seperti pada gambar di bawah ini :
Gambar 1.2 panel pengendali mesin secara umum
Keterangan gambar :
1. Saklar ON spindel untuk operasi mesin CNC secara manual
2. Tombol pengatur kecepatan spindel
3. Saklar utama ON atau OFF
4. Lampu indikator
5. Tombol darurat
6. Tombol pilihan satuan sistem persumbuan untuk milimeter (mm) atau inchi
7. Penggerak disket
8. Lampu petunjuk operasi manual
9. Tombol pengatur kecepatan pemakanan
10. Tombol pelintasan cepat-tombol ini ditekan bersamaan dengan salah satu tombol penggerak eretan peda arah relatif
11. Penunjukan alamat pemrograman
12. Penampilan data alamat aktif dan berbagai jenis alarm
13. Lampu penunjuk operasi mesin CNC
14. Tombol pilihan pelayanan manual atau CNC
15. Tombol untuk mengaktifkan alamat M pada waktu menyimpan program dan menguji ketapan data geometris program
16. Tombol START untuk menjalankan mesin
17. Tombol-tombol untuk memasukan data
a. Tombol angka 0-9
b. Tombol minus (-) untuk mengubah arah lintasan
c. Tombol INP, untuk menyimpan data alamat yand masuk
d. Tombol DEL, untuk menghapus data per alamat
e. Tombol REV, untuk mengembalikan kursor blok per blok
f. Tombol FWD, untuk memajukan kursor per blok
g. Tombol panah, untuk memajukan kursor per alamat
h. Tombol M, untuk mengaktifkan fungsi M
18. Tombol penggerak manual arah relatif dengan step motor : (pedoman arah penggerakan memanjang dan melintang kita anggap menggerakan pisau,walaupun yang bergerak mejanya)
a. Tombol –X, pisau melintas arah memanjang kekiri (meja mesin bergerak ke kanan)
b. Tombol +X, pisau melintas arah memanjang ke kanan (meja mesin bergerak ke kiri)
c. Tombol –Y, pisau melintas arah melintang ke luar atau menuju operator
d. Tombol +Y, pisau melintas arah melintang ke dalam atau menjauhi operator
e. Tombol –Z, pisau melintas arah turun
f. Tombol +Z, pisau melintas arah naik
19. Amperemeter
Kegiatan Belajar 2
MENGOPERASIKAN MESIN SECARA MANUAL
a. Tujuan Kegiatan Pembelajaran
Ø Menyebutkan langkah pengoperasian mesin CNC TU-3A secara manual
Ø Memasang dan melepas pisau pada mesin
Ø Mengefrais secara manual
b. Uraian Materi Pembelajaran
Langkah-langkah pengoperasian mesin CNC TU-3A secara manual sebagai berikut :
1. Menghidupkan mesin
Langkah operasional yang di lakukan untuk menghidupkan mesin CNC TU-3A ialah dengan memutar saklar utama mesin ke kanan (angka 1) pada kedudukan ON, dan lampu indikator arus masuk akan menyala.


Gambar 2.1 menghidupkan mesin

1. Memutar dan menyetel kecepatan spindel
Untuk memutar spindel utama mesin putar saklar ON spindel untuk operasi mesin CNC secara manual, setelah spindel utama mesin berputar atur kecepatan putar spindel mesin dengan memutar knob pengatur kecepatan spindel mesin sesuai dengan

Gambar 2.2 Menyetel Kecepatan Spindel
kecepatan yang di inginkan, apabila knob di putar searah jarum
jam maka kecepatan putar spindel mesin semakin besar.
1. Menggeser pisau
a. Sistem Persumbuan
Sistem persumbuan distandarkan untuk berbagai permesinan berdasarkan ISO 841 dan DIN 66217 dengan dasar sistem koordinat cartesian. Untuk memudahkan penunjukan persumbuan mesin CNC TU-3A (tegak), operator berhadapan dengan mesin, lalu buka jari-jari tangan kanan (kaidah tangan kanan) seperti pada gambar berikut.
Gambar 2.3 Sistim persumbuan kaidah tangan kanan
Gambar di bawah ini menunjukan berbagai sistem persumbuan untuk mesin frais vertikal (tegak)
Pada mesin frais jenis ini kepala fairs dan pisau bergerak secara vertikal dan benda kerja yang terpasang di atas meja melaksanakan gerakan melintang dan memanjang.
Gambar 2.4 Sistem persumbuan mesin frais vertikal
(alat potong yang bergerak)
Pada mesin frais jenis kedua ini kepala mesin frais dan pisaunya diam tidak melakukan gerakan vertikal dan benda kerja yang terpasang di atas meja melaksanakan gerakan melintang dan memanjang.
Gambar 2.5 Sistem Persumbuan Mesin frais vertikal
(meja mesin yang bergerak)
a. Menyetel kecepatan pemakanan/ingsutan (feeding/F)
kemampuan alat potong melakukan penyayatan bahan Kecepatan pemakanan/ingsutan berkenaan dengan dalam setiap satu menit yang di pengaruhi oleh :
1. Bahan benda kerja/bahan pisau
2. Kondisi mesin
3. Geometri mata pisau frais
Untuk menentukan besarnya kecepatan pemakanan mesin dapat di lakukan dengan dua cara yaitu dengan rumus menghitung besarnya kecepatan pemakanan :
F=n x f x s
Keterangan :
F = Kecepatan pemakanan (mm/menit)
n = jumlah mata sayat
f = lebar penyayatan
s = Kecepatan putar spindel mesin
atau dapat juga menggunakan tabel hubungan kedalaman pemotongan,diameter pisau dan kecepatan sayat seperti gambar di bawah ini.
Pengefraisan
Dalamnya pemotongan-Diameter alat potong – Asutan
Pemboran
Diameter batang bor – Asutan
Contoh :
Bahan benda kerja aluminium, bahan pisau HSS, kedalaman pemotongan (t) = 10 mm dan diameter pisau (d) = 10 mm, maka kecepatan pemakanan (F) yang sesuai = 60 mm/men. Untuk mengatur kecepatan pemakanan secara manual : putarlah knob pengatur kecepatan pemakanan searah jarum jam untuk memperbesar kecepatan pemakanan dan ke kiri untuk memperkecil kecepatan pemakanan.

Gambar 2.6 Menyetel feedin
b. Menggeser eretan secara bebas
Untuk melakukan perlintasan secara cepat pada mesin CNC TU-3A di lakukan dengan cara menekan tombol pelintas cepat tombol ini ditekan bersamaan dengan salah satu tombol penggerak eretan pada arah relatif, yaitu tombol
c. Menggeser eretan secara terukur
Untuk melakukan penggeseran eretan secara terukur pada mesin CNC TU-3A dilakukan dengan cara menekan tombol penggerak eretan pada arah relatif, yaitu tombol : -X -Y -Z +X +Y +Z untuk melihat besaran pergerakan eretan yang di butuhkan dapat dilihat pada monitor mesin, apabila penggeseran sesuai dengan yang di inginkan hentikan penekanan tombol arah relatif pada panel pengendali.
4. Memasang/melepas pisau jari pada pemegang (holder)
Untuk memasang pisau fraisjari pada holder,lakukan-langkah berikut :
a. Siapkan kolet untuk mencekam pisau pada holder.
b. Letakan kolet ke dalam rumah/mur.
c. Masukkan mur pengencang dengan posisi miring sedemikian rupa,sehingga bagian eksentrik masuk kedalam alur kolet.
d. Masukkan mur pengencang dengan koletnya ke ujung holder.
e. Masukan alat potong kedalam kolet dan kencangkan mur dengan pen silindris searah jarum jam.
Untuk melepas pisau frais jari dan holdernya,lakukan langkah berikut :
a. Putar berlawanan jarum jam mur pengencang
b. Setelah mur pengencang di kendorkan, cabut alat potong dari kolet.

Gambar 2.7 memasang pisau jari
5. Memasang/melepas holder pada sumbu utama
Lakukan langkah berikut ini untuk memasang holder pada spindel utama mesin :

Gambar 2.8 memasang holder
a. Putar handel penetap holder searah jarum jam untuk membuka pen penetap spindel
b. Masukkan holder ke dalam lubang spuindel.
c. Putar holder bolak-balik untuk menetapkan kedudukan alur holder pada pen penetap.
d. Setelah kedudukan pen penetap pada spindel masuk ke dalam alur holder lepas kembali hendel penetap sehingga holder terkunci secara otomatis

1. Mengefrais benda kerja secara manual
Apabila akan melakukan pengefraisan secara manual dengan diameter pisau frais 10 mm, maka lakukan langkah-langkah penyetelan nol benda kerja sebagai berikut:
a. Gerakkan pisau frais pada arah –Z sampai sedikit menggores permukaan benda kerja, lalu tekan tombol INP dua kali, maka sajian Z pada layar monitor menunjukan angka 0).
Gambar 2.9 Gerakkan Pisau ke Arah Z
b. Gerakkan pisau pada arah X sampai sedikit menggores sisi benda kerja, lalu tekan tombol INP dua kali, maka sajian X pada layar monitor menunjukan angka 0).
Gambar 2.10 Gerakkan pisau ke Arah X
c. Goreskan sisinya pada arah Y, lalu tekan tombol INP dua kali, maka sajian Y pada layar monitor menunjukan angka 0).
Gambar 2.11 gerakkan Pisau ke Arah Y
d. Gerakkan pisau frais ke arah Y, setelah sajian menunjukan nol.
Gambar 2.10 Gerakkan Pisau frais
Setelah langkah di atas, isilah terlebih dahulu data berikut:
Kecepatan put. Spindel (put/men)
...........................
Ingsutan F (mm/men)
...........................
Lebar X (mm)
..........................
Kedalaman z (mm)
...........................
Perhatikan penyetelan ingsutan secara
benar
Gambar 2.11 Skema Gerakkan Pengfraisan Manual
2. Pengoperasian Manual
Sajian
Setlah menghidupkan mesin, sajian menunjukan 0. lampu-lampu X, Y, Z menyala
Jika anda menggerakkan kearah X, lampu X menyala. Jika anda melepas jari dari tombol, jarak gerakannya ditunjukan dalam 1/100 mm pada VDU. Dengan jarak 2,45 mm. Sajian menunjukan 245
Jika anda menekan tombol Z, nyala meloncat ke lampu Z. Setelah anda mengangkat jari dari tombol, jarak gerakan muncul (dengan 6,28 mm akan muncul 628).
Tanda minus pada sajian.
Monitor
Jika anda menghidupkan mesin, layar menunjukan nol untuk X, Y, Z
Dengan pengecualian gerakkan cepat, penunjukan memperlihatkan terus menerus dalam langkah 0,5 mm.
1. menyetel posisi start pisau jari ( PST = position of setting tool / start point )
langkah penyetelan posisi start pisau jari dapat dilakukan sebagai berikut :
a. sajian harus menunjukan nol pisau frais berada pada titik yang ditentukan ( Y=0, Z =0), lakukan penyetelan pisau agar sajikan X, Y, Z berada pada titik nol
b. geser posisi pisau pada sisi X dengan jarak 22,15 dengan prosedur :
1) lampu X pada sajian menyala
2) tekan INP – lampu X
2
berkedip
3) masukan nilai
5
( tanpa tanda +/-, sebab pisau frais dengan geraqkan arah + harus nol )
4) tekan tombol INP, maka kedipan lampu X akan berhenti.
c. masukan nilai Y dan Z dengan cara yang sama.
Gambar 2.13 Langkah Menyetel PST
Untuk penyetelan posisi start pisau jari dengan metoda pelayanan manual dilakukan dengan cara berikut :
a. goreskan pisau pada permukaan
benda kerja, lalu setel sajian Z=0
b. goreskan sisi pisau pada sisi benda kerja arah X, lalu masukan nilai radius pisau frais (r).
c. goreskan sisi pisau pada sisi benda kerja arah Y, lalu masukan nilai radius pisau frais (r).
Gambar 2.13 Penyetelan posisi start pisau
1. Memuat ( entry ) data program CNC ke mesin
a. fungsi tombol – tombol penyunting ( edit )
Gambar 2.14 Tombol penyunting
Keterangan gambar :
1. Tombol angka
2. Tombol tanda minus, untuk memasukan nilai minus, tombol minus harus ditekan setelah memasukan angka.
3. Tombol INPUT, untuk menyimpan data
4. Tombol DEL, untuk menghapus
5. Tombol FWD,untuk program melompat maju blok demi blok
6. Tombol REV, untuk program melompat mundur blok demi blok
7. Tombol panah , untuk sajian melompat per alamat
8. Tombol M, untuk memesukan fungsi lain
b. memuat/memasukan program
Gambar 2.15 Memasukan program
Memasukan program pada mesin CNC TU-3A dengan cara menggunakan tombol penyunting yang dapat dilakukan dengan dua cara, yaitu :
a. Dari disket
Langkah-langkah memasukan program melalui disket adalah sebagai berikut :
§ Masukan disket kedalam program melalui disket adalah pengendali
§ Memasukan data G65 tekan INP sebanyak dua kali
§ Pilih nomor program tekan INP
b. Secara manual
Untuk memasukkan program secara manual dengan menggunakan tombol penyunting
§ Tombol angka 0-9
§ Tombol tanda minus, untuk memasukan nilai minus, tombol harus ditekan setelah memasukkan angka
§ Tombol INPUT, untuk menyimpan data
§ Tombol DEL, untuk menghapus
§ Tombol FWD, untuk program melompat maju blok demi blok
§ Tombol REV, untuk program melompat mundur blok demi blok
§ Tombol panah, untuk sajian melompat per alamat
§ Tombol M, untuk memasukan fungsi lain
2. Mematikan mesin
Setelah mesin digunakan, maka langkah yang penting kemudian ialah mematikan mesin. Langkah mematikan mesin sesuai dengan prosedur merupakan salah satu bagian dari pemeliharaan.
Sebelum mematikan tombol power listrik pada mesin, terlebih dulu lakukan pemutusan arus listrik pada motor step dengan langkah :
a. Aktifkan pelayanan mesin CNC dengan menekan tombol H/C
b. Tekan tombol panah untuk mengaktifkan alamat G
c. Tekan tombol angka 6dan 4 dalam alamat G tersebut
d. Tetapkan kombinasi angka tersebut dengan menekan tombol INP
e. Kembali ke pelayanan manual dengan menekan tombol H/C
Gambar motor listrik sudah tidak nampak lagi pada layar monitor.
Setelah langkah di atas selesai dilakukan, kemudian matikan saklar utama mesin.
Kegiatan Belajar 3
MEMBUAT PROGRAM CNC TU-3A
A. Tujuan Kegiatan pembelajaran
Setelah menyelesaikan kegiatan belajar 3 ini, anda akan dapat :
· Memahami pengertian program CNC TU-3A
· Memahami struktur program CNC
· Memahami metoda pengukur titik koordinat absolut dan inkremental/relatif
· Menyebutkan fungsi kode ”G” dan “M”
· Melakukan pemrograman uintuk pengefraisan kontur lurus, radius dan kantong (pocket)
B. Uraian Materi
TU (Training Unit)-3A merupakan mesin frais CNC yang khusus digunakan untuk pelatihan, dimana ukuran dan kapasitas mesin lebih kecil dibandingkan dengan PU (Production Unit). Pengoperasian mesin tersebut menggunakan kode-kode numeris yang di susun dalam bentuk program NC.
1. Pengertian Program NC
Program NC pada intinya adalah perintah kepada pisau (alat pemotong) untuk bergerak dari yiyik koordinat yang lainnya sehingga akhirnya menghasilkan kontur benda sesuai yang diharapkan oleh program.
Bahasa perintah ini tersusun dari kode-kode numeris yakni kode berupa huruf dan angkan tertentu yang oleh pengendali mesin CNC kode numeris tersebut diubah menjadi sinyal-sinyal listrik yang menggerakan, misalnya : motor step pada eretan.
Pengkodean gerak pisau dinyatakan dengan menggunakan persumbuan sistem koordinat Cartesian seperti dalam gambar 3.1 berikut :
Gambar 3.1: Pengkodean gerakan pisau
Keterangan :
Gerakan X : memanjang
Gerakan Y : melintang
Gerakan Z : tegak
Pengkodean dengan huruf seperti di atas merupakan sebuah intruksi terhadap gerakan pisau untuk lintasan memenjang, melintang dan tegak. Sedangkan arah gerakannya mengikuti tanda + (plus) atau – (minus).
Contoh intruksi pada mesin CNC untuk melakikan operasi seperti gambar 3.2 dibawah dapat diuraikan sebagai berikut :
Gambar 3.2 : Intruksi
Pengkodean lintasan pisau jari pada gambar di atas dapat dilihat pada tabel berikut.
Tabel 3.1 :Perubahan Intruksi dalam Bentuk Kode
Intruksi Verbal
Intruksi Bentuk Kode
1. Gerakan pisau ke bawah (eretan tegak) 15 mm
2. Gerakan pisau ke kanan (eretan memanjang) 50mm
3. Gerakan pisau maju (eretan melintang) 30 mm
Z -15
X 50
Y 30
Pada gerakan 1 tidak terjadi pembuangan tatal. Dengan gerakan secepat mungkin. Gerakan cepat ini dikodekan GOO.
Pada gerakan 2 dan 3 merupakan gerakan lurus dan terjadi pembuangan tatal. Gerakan interpolasi lurus ini dikodekan GO1.
Kecepatan gerakan 2 dan 3 harus diatur sesuai perhitungan, yang tergantung dari diameter pisau frais, jenis bahan dan dalamnya pemotonan.
Dalam hal agar mesin CNC dapat melakukan gerakan seperti gambar 3.2, maka perintah harus diberikan kepada komputer dengan mengisi format yang terdapat pada layar sebagai berikut :
Tabel 3.2 : Penisian kode
N
G
(M)
V
(I) (D)
Y
(Y) (S)
Z
(K)
F
(L) (T) (H)
................
00
0
0
-1500
................
01
5000
0
..................
................
01
0
3000
0
..................
Keterangan :
Pada TU – 3A panjangnya gerakan di program tanpa titik desimal dalam 1/100 mm atau 1/1000 inci,sehingga perintah gerakan 15 mm diprogramkan 1500, perintah gerakan 30 mm diprogramkan 3000, perintah gerakan 50mm diprogramkan 5000 dst.
Sedangkan dalam sebuah inci, perintah gerakan 1,235 inci diprogramkan 1235 dst.
2. Struktur Program CNC
Program CNC merupakan naskah program yang di dalamnya memuat data pokok untuk pembuatan/pengerjaan bahan bakal menjadi suatu bentuk benda kerja. Dengan demikian program CNC terdiri dari beberapa dagian yang tersusun secara berurutan, baik blok, kata-kata maupun kata-nya.
Ø Blok
Program terdiri dari beberapa blok, dimana setiap blok berisikan semua data untuk melakukan satu pekerjaan. (contoh, perintah : gerakan eretan memanjang 25 mm, dengan kecepatan 120 mm/menit)
Tabel 3.3 : Blok
N
G
(M)
X
(I) (D)
Y
(J) (S)
Z
(K)
F
(L) (T) (H)
00
00
-3000
0
0
01
01
0
-2500
0
120
02
01
1050
0
0
120
03
01
0
-1680
100
120
Ø Kata-Kata
Setiap blok pada suatu program terdiri dari derbagai kata-kata, dimana setiap kata terdiri dari satu huruf dan satu kombinasi angka.
Contoh : N 01.
Ø Kata
Kata tediri dari satu huruf dan kombinasi angka (nomor kunci).
Huruf yang terletak pada kata disebut juga adres.
Beberapa adres yang terdapat di dalam lembaran program didefinisikan sebagai berikut :
Tabel 3.4 : Adres
N
G
(M)
X
(I) (D)
Y
(Y) (S)
Z
(K)
F
(L) (T) (H)
a. Adres “N”
“N” merupakan singkatan dari nomor intriksi atau perintah satu pekerjaan di dalam blok.
b. Adres “G”
Pada kolom ini akan kita masukan informasi kunci fungsi jalan.
c. Adres “X,Y,Z”
Kolom-kolom ini memuat data panjangnya gerakan eretan memanjang (X), melintang (Y) dan tegak (z) yang diprogram tanpa titik desimal, dalam 1/100 mm dan 1/1000 inci.
d. Adres “F”
Kolom “F” akan memberikaqn informasi atau perintah kecepatan pemakanan/ingsutan dalam satuan mm/ menit atau 1/10 inci/ menit.
e. Adres “M”
Fungsi “M” di sebut sebagai fungsi bantu yang dituliskan pada kolom “g’ di sertai nomor kunci.
f. Adres “D”
Adres “D” merupakan besarnya radius pisau, sehingga bila radius pisau=5mm akan kita tulis D 500
g. Adres “S”
+Adres ini merupakan kecepatan putaran spindle atau pisau.
Contoh : Putaran Pisau 2000 rpm akan kita tulis S 2000
h. Adres “T”
Adres “T’ digunakan untuk memilih alat potong sesuai dengan nomor yang ada, contoh : T 02
i. Adres “I”,”J”dan “K”
Adres ini merupakan parameter pemrograman melingkar (akan di uraikan pada uraian G 02 / G 03).
3. Metode Pengukuran Titik Koordinat
Metode pengukuran titik koordinat pada mesin CNC penting sekali untuk di pelajari mengingat bahwa ketepatan gerakan pisau akan menentukan keakuratan hasil dan bentuk benda kerja yang dibuat.
Ada 3 (tiga) metode pengukuran titik koordinat yang akan dibahas berikut ini, yaitu Pengukuran Absolut, Pengukurai Inkremental dan Pengukuran Campuran.
Pengukuran Absolut
Pengukuran Inkremental
Gambar 3.3 : Metode Pengukuran Absolut dan Inkremental
Metode pengukuran titik koordinat ini dapat dipilih sesuai dengan keinginan kita dengan memberikan infornasi kunci pada kolom “G”, yaitu untuk Absolut = G 90 dan Inkremental = G 91
a. Metode Pengukuran Absolut
Gambar 3.4 : Pengukuran Absolut
Pada metode pengukuran koordinat secara absolut semua titik koordinat diukur dari titik tertentu sebagai titik 0 (nol)/titik referensi.
Pada gambar contoh (gambar 3.4) titik-titik A,B,C, diukur dari titik W sebagai titik nolnya.
Penulisannya dalam format program, sebagai berikut (Skala 10 mm tiap petak) :